A Relevance Feedback Model for Fractal Summarization
نویسندگان
چکیده
As a result of the recent information explosion, there is an increasing demand for automatic summarization, and human abstractors often synthesize summaries that are based on sentences that have been extracted by machine. However, the quality of machine-generated summaries is not high. As a special application of information retrieval systems, the precision of automatic summarization can be improved by user relevance feedback, in which the human abstractor can direct the sentence extraction process and useful information can be retrieved efficiently. Automatic summarization with relevance feedback is a helpful tool to assist professional abstractors in generating summaries, and in this work we propose a relevance feedback model for fractal summarization. The results of the experiment show that relevance feedback effectively improves the performance of automatic fractal summarization.
منابع مشابه
Positional language modeling for extractive broadcast news speech summarization
Extractive summarization, with the intention of automatically selecting a set of representative sentences from a text (or spoken) document so as to concisely express the most important theme of the document, has been an active area of experimentation and development. A recent trend of research is to employ the language modeling (LM) approach for important sentence selection, which has proven to...
متن کاملEffective pseudo-relevance feedback for language modeling in extractive speech summarization
Extractive speech summarization, aiming to automatically select an indicative set of sentences from a spoken document so as to concisely represent the most important aspects of the document, has become an active area for research and experimentation. An emerging stream of work is to employ the language modeling (LM) framework along with the Kullback-Leibler divergence measure for extractive spe...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملUniversity of Waterloo at the TREC 2013 Temporal Summarization Track
The University of Waterloo participated in the Temporal Summarization Track at TREC 2013 and submitted 8 runs for the Sequential Update Summarization Task. Methods like query likelihood ranking, pseudo relevance feedback, BM25 and cosine similarity, as well as, algorithms for passage retrieval and term expansion using distributional similarity to a set of seed words, were used for returning rel...
متن کاملHierarchical summarization of large documents
summarization models do not take into account the human abstractor's behavior of sentence extraction and only consider the document as a sequence of sentences during the process of extraction of sentences as a summary. In general, a document exhibits a well-defined hierarchical structure that can be described as fractals— mathematical objects with a high degree of redundancy. In this article, w...
متن کامل